Homological evolutionary vector fields in Korteweg–de Vries, Liouville, Maxwell, and several other models

We review the construction of homological evolutionary vector fields on infinite jet spaces and partial differential equations. We describe the applications of this concept in three tightly inter-related domains: the variational Poisson formalism (e.g., for equations of Korteweg–de Vries type), geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-01, Vol.343 (1), p.12058-20
1. Verfasser: Kiselev, Arthemy V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review the construction of homological evolutionary vector fields on infinite jet spaces and partial differential equations. We describe the applications of this concept in three tightly inter-related domains: the variational Poisson formalism (e.g., for equations of Korteweg–de Vries type), geometry of Liouville-type hyperbolic systems (including the 2D Toda chains), and Euler–Lagrange gauge theories (such as the Yang–Mills theories, gravity, or the Poisson sigma-models). Also, we formulate several open problems.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/343/1/012058