Velocity Estimation for Quadrupeds Based on Extended Kalman Filter

Measuring robots’ real-time velocity correctly is important for locomotion control. Inertial Measurement Unit (IMU) is widely used for velocity measurement. Limited by the bias and random error, IMU alone often can’t meet the requirement. This paper makes use of Extended Kalman Filter (EKF) to fuse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2014-08, Vol.621, p.525-532
Hauptverfasser: Li, Man Tian, Wang, Peng Fei, Wang, Cong Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measuring robots’ real-time velocity correctly is important for locomotion control. Inertial Measurement Unit (IMU) is widely used for velocity measurement. Limited by the bias and random error, IMU alone often can’t meet the requirement. This paper makes use of Extended Kalman Filter (EKF) to fuse kinematics and IMU, and inhibits the drift successfully. We calibrate the bias and recognize the random errors of IMU. Then the forward kinematics of legs is established and the EKF algorithm for velocity estimation is designed based on IMU and kinematics. Finally, the presented algorithm is validated in simulation and on a quadruped robot based on hydraulic driver in trotting gait.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.621.525