On the -invariant of the cyclotomic derivative of a Katz p -adic -function
When the branch character has root number $- 1$ , the corresponding anticyclotomic Katz $p$ -adic $L$ -function vanishes identically. For this case, we determine the $\mu $ -invariant of the cyclotomic derivative of the Katz $p$ -adic $L$ -function. The result proves, as an application, the non-vani...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2015-01, Vol.14 (1), p.131-148 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When the branch character has root number
$- 1$
, the corresponding anticyclotomic Katz
$p$
-adic
$L$
-function vanishes identically. For this case, we determine the
$\mu $
-invariant of the cyclotomic derivative of the Katz
$p$
-adic
$L$
-function. The result proves, as an application, the non-vanishing of the anticyclotomic regulator of a self-dual CM modular form with root number
$- 1$
. The result also plays a crucial role in the recent work of Hsieh on the Eisenstein ideal approach to a one-sided divisibility of the CM main conjecture. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748013000388 |