OH Radical-Initiated Chemistry of Isoprene in Aqueous Media. Atmospheric Implications

The fate of isoprene (2-methyl-1,3-butadiene, ISO) emissions into the atmosphere is not fully understood. Increasing awareness that ISO is only partially processed in the gas-phase has turned attention to its reactive uptake by fog, cloud, and aerosol droplets. A hydrophobic gas, ISO would preferent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-06, Vol.117 (24), p.5117-5123
Hauptverfasser: Kameel, F. Rifkha, Hoffmann, M. R, Colussi, A. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fate of isoprene (2-methyl-1,3-butadiene, ISO) emissions into the atmosphere is not fully understood. Increasing awareness that ISO is only partially processed in the gas-phase has turned attention to its reactive uptake by fog, cloud, and aerosol droplets. A hydrophobic gas, ISO would preferentially partition to the surface rather than the bulk of aqueous media. Such media normally contain dissolved O2 and water-soluble unsaturated organics and support •OH generation rates (from the solar photolysis of dissolved H2O2) that are several orders of magnitude larger than in the gas-phase. Thus, ISO should be converted therein to heavier products rather than into the C4–C5 volatile compounds produced in the gas-phase. Here we substantiate such a scenario by reporting that the λ > 305 nm photolysis of H2O2 in dilute aqueous ISO solutions yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. A minimum of seven C10H15OH isomers are resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. Our findings are consistent with the addition of •OH to ISO, followed by HO-ISO• reactions with ISO in competition with O2, leading to second generation HO(ISO)2• radicals that terminate as C10H15OH via β-H abstraction by O2. We show that a significant fraction of gas-phase olefins should be converted into less volatile species via this process on wet airborne particles.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp4026267