The Dominant Role of Exciton Quenching in PbS Quantum-Dot-Based Photovoltaic Devices
We present a quantitative measurement of the number of trapped carriers combined with a measurement of exciton quenching to assess limiting mechanisms for current losses in PbS-quantum-dot-based photovoltaic devices. We use photocurrent intensity dependence and short-wave infrared transient photolum...
Gespeichert in:
Veröffentlicht in: | Nano Lett 2013-12, Vol.13 (12), p.5907-5912 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a quantitative measurement of the number of trapped carriers combined with a measurement of exciton quenching to assess limiting mechanisms for current losses in PbS-quantum-dot-based photovoltaic devices. We use photocurrent intensity dependence and short-wave infrared transient photoluminescence and correlate these with device performance. We find that the effective density of trapped carriers ranges from 1 in 10 to 1 in 10 000 quantum dots, depending on ligand treatment, and that nonradiative exciton quenching, as opposed to recombination with trapped carriers, is likely the limiting mechanism in these devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl402886j |