The LED and fiber based calibration system for the photomultiplier array of SNO

A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2015-01, Vol.587 (1), p.12031-5
Hauptverfasser: Seabra, L, Alves, R, Andringa, S, Bradbury, S, Carvalho, J, Clark, K, Coulter, I, Descamps, F, Falk, L, Gurriana, L, Kraus, C, Lefeuvre, G, Maio, A, Maneira, J, Mottram, M, Peeters, S, Rose, J, Sinclair, J, Skensved, P, Waterfield, J, White, R, Wilson, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/587/1/012031