Quantum Chemistry Investigation of Secondary Reaction Kinetics in Acrylate-Based Copolymers

Recently, a growing amount of attention has been focused on the influence of secondary reactions on the free radical polymerization features and the properties and microstructure of the final polymer, particularly in the context of acrylate copolymers. One of the most challenging aspects of this res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-05, Vol.117 (21), p.4358-4366
Hauptverfasser: Cuccato, Danilo, Mavroudakis, Evangelos, Moscatelli, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, a growing amount of attention has been focused on the influence of secondary reactions on the free radical polymerization features and the properties and microstructure of the final polymer, particularly in the context of acrylate copolymers. One of the most challenging aspects of this research is the accurate determination of the corresponding reaction kinetics. In this paper, this problem is addressed using quantum chemistry. The reaction rate coefficients of various backbiting, propagation, and β-scission steps are estimated considering different chain configurations of a terpolymer system composed of methyl acrylate, styrene, and methyl methacrylate. The replacement of methyl acrylate radical units with styrene and methyl methacrylate globally decreases the backbiting probability and shifts the equilibrium toward the reactants, while the effect of replacing adjacent units is weaker and more dependent upon the specific substituting monomer. Propagation kinetics is affected primarily by the replacement of the radical units, while this effect appears to be particularly effective on midchain radical reactivity. The overall results clarify the different physicochemical behavior of chain-end, midchain, and short-branch radicals as a function of copolymer composition, providing new insights into free radical polymerization kinetics.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp402025p