Integral constraints in multiple-scales problems
Asymptotic homogenisation via the method of multiple scales is considered for problems in which the microstructure comprises inclusions of one material embedded in a matrix formed from another. In particular, problems are considered in which the interface conditions include a global balance law in t...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2015-10, Vol.26 (5), p.595-614 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asymptotic homogenisation via the method of multiple scales is considered for problems in which the microstructure comprises inclusions of one material embedded in a matrix formed from another. In particular, problems are considered in which the interface conditions include a global balance law in the form of an integral constraint; this may be zero net charge on the inclusion, for example. It is shown that for such problems care must be taken in determining the precise location of the interface; a naive approach leads to an incorrect homogenised model. The method is applied to the problems of perfectly dielectric inclusions in an insulator, and acoustic wave propagation through a bubbly fluid in which the gas density is taken to be negligible. |
---|---|
ISSN: | 0956-7925 1469-4425 |
DOI: | 10.1017/S0956792514000412 |