Numerical Investigation of Non-Newtonian Flow and Heat Transfer Characteristics in Rectangular Tubes with Protrusions

Flow characteristics and heat transfer performances in rectangular tubes with protrusions are numerically investigated in this paper. The thermal heat transfer enhancement of composite structures and flow resistance reduction of non-Newtonian fluid are taken advantage of to obtain a better thermal p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-11
Hauptverfasser: Zhang, Di, Shen, Zhongyang, Zhang, Zheyuan, Xie, Yonghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow characteristics and heat transfer performances in rectangular tubes with protrusions are numerically investigated in this paper. The thermal heat transfer enhancement of composite structures and flow resistance reduction of non-Newtonian fluid are taken advantage of to obtain a better thermal performance. Protrusion channels coupled with different CMC concentration solutions are studied, and the results are compared with that of smooth channels with water flow. The comprehensive influence of turbulence effects, structural effects, and secondary flow effects on the CMC’s flow in protrusion tubes is extensively investigated. The results indicate that the variation of flow resistance parameters of shear-thinning power-law fluid often shows a nonmonotonic trend, which is different from that of water. It can be concluded that protrusion structure can effectively enhance the heat transfer of CMC solution with low pressure penalty in specific cases. Moreover, for a specific protrusion structure and a fixed flow velocity, there exists an optimal solution concentration showing the best thermal performance.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/121048