Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates
Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film trans...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013-08, Vol.13 (8), p.3864-3869 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film transistors on mechanically flexible substrates. The fully printed transistors are configured in a top-gate device geometry and utilize silver metal electrodes and an inorganic/organic high-κ (∼17) gate dielectric. The devices exhibit excellent performance for a fully printed process, with mobility and on/off current ratio of up to ∼9 cm2/(V s) and 105, respectively. Extreme bendability is observed, without measurable change in the electrical performance down to a small radius of curvature of 1 mm. Given the high performance of the transistors, our high-throughput printing process serves as an enabling nanomanufacturing scheme for a wide range of large-area electronic applications based on carbon nanotube networks. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl401934a |