The Wavelength-Locking of High-Power 808 nm Semiconductor Laser
A distributed feedback (DFB) laser of 808 nm is produced in this paper whose optical power is 2 W, cavity length is 3 mm, and injecting width is 200 μm. A second-order grating formed into an InGaP/GaAs/InGaP multilayer structure provides the optical distributed feedback. The holographic lithography...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A distributed feedback (DFB) laser of 808 nm is produced in this paper whose optical power is 2 W, cavity length is 3 mm, and injecting width is 200 μm. A second-order grating formed into an InGaP/GaAs/InGaP multilayer structure provides the optical distributed feedback. The holographic lithography method is adopted to make Bragg gratings in p-waveguide layer (Λ = 240 nm) of the GaAs epitaxial wafers. The best experimental conditions are determined by analyzing the surface morphology and three-dimensional holographic grating. In addition, the output power data and wavelength of the distributed feedback laser emitting at different temperatures are presented. And the wavelength varies with temperature at a rate of 0.062 nm/K. Finally, the conclusion is drawn that this kind of DFB laser has a better temperature stabilized wavelength and narrower line width. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2015/450324 |