Frobenius categories, Gorenstein algebras and rational surface singularities

We give sufficient conditions for a Frobenius category to be equivalent to the category of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this result to the Frobenius category of special Cohen–Macaulay modules over a rational surface singularity, where we show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2015-03, Vol.151 (3), p.502-534
Hauptverfasser: Kalck, Martin, Iyama, Osamu, Wemyss, Michael, Yang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give sufficient conditions for a Frobenius category to be equivalent to the category of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this result to the Frobenius category of special Cohen–Macaulay modules over a rational surface singularity, where we show that the associated stable category is triangle equivalent to the singularity category of a certain discrepant partial resolution of the given rational singularity. In particular, this produces uncountably many Iwanaga–Gorenstein rings of finite Gorenstein projective type. We also apply our method to representation theory, obtaining Auslander–Solberg and Kong type results.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X14007647