Visualization of Multimerization and Self-Assembly of DNA-Functionalized Gold Nanoparticles Using In-Liquid Transmission Electron Microscopy
Base-pairing stability in DNA-gold nanoparticle (DNA-AuNP) multimers along with their dynamics under different electron beam intensities was investigated with in-liquid transmission electron microscopy (in-liquid TEM). Multimer formation was triggered by hybridization of DNA oligonucleotides to anot...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2015-11, Vol.6 (22), p.4487-4492 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Base-pairing stability in DNA-gold nanoparticle (DNA-AuNP) multimers along with their dynamics under different electron beam intensities was investigated with in-liquid transmission electron microscopy (in-liquid TEM). Multimer formation was triggered by hybridization of DNA oligonucleotides to another DNA strand (Hyb-DNA) related to the concept of DNA origami. We analyzed the degree of multimer formation for a number of samples and a series of control samples to determine the specificity of the multimerization during the TEM imaging. DNA-AuNPs with Hyb-DNA showed an interactive motion and assembly into 1D structures once the electron beam intensity exceeds a threshold value. This behavior was in contrast with control studies with noncomplementary DNA linkers where statistically significantly reduced multimerization was observed and for suspensions of citrate-stabilized AuNPs without DNA, where we did not observe any significant motion or aggregation. These findings indicate that DNA base-pairing interactions are the driving force for multimerization and suggest a high stability of the DNA base pairing even under electron exposure. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.5b02075 |