Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI a...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2015-11, Vol.6 (22), p.4653-4672 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4672 |
---|---|
container_issue | 22 |
container_start_page | 4653 |
container_title | The journal of physical chemistry letters |
container_volume | 6 |
creator | Gauthier, Magali Carney, Thomas J Grimaud, Alexis Giordano, Livia Pour, Nir Chang, Hao-Hsun Fenning, David P Lux, Simon F Paschos, Odysseas Bauer, Christoph Maglia, Filippo Lupart, Saskia Lamp, Peter Shao-Horn, Yang |
description | Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties. |
doi_str_mv | 10.1021/acs.jpclett.5b01727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753444674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753444674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EolA4ARLykk1aO47jmB1UBSpVsClLFDnOpKRKnWI7Qt1xB27ISTA0IFas5mv0_x_NQ-iMkhElMR0r7UarjW7A-xEvCBWx2ENHVCZZJGjG9__oATp2bkVIKkkmDtEgTjkliRBH6GnagPa2LeHj7b3XzdYDnhkPtlIacG3wvI5mrcHXyodlDe4STzprwXj8aEqwzitT1maJw8D38BrCrl4-e3eCDirVODjt5xAtbqaLyV00f7idTa7mkWKS-EhAXJQkK5UUqZCMiUoRkZFYSC5jRuKYyTJLC1ZJzrWueJJIpsusoMClrDgbootd7ca2Lx04n69rp6FplIG2czkVnCVJkookWNnOqm3rnIUq39h6rew2pyT_wpoHrHmPNe-xhtR5f6Ar1lD-Zn44BsN4Z_hOt5014d1_Kz8B70uHSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753444674</pqid></control><display><type>article</type><title>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</title><source>ACS Publications</source><creator>Gauthier, Magali ; Carney, Thomas J ; Grimaud, Alexis ; Giordano, Livia ; Pour, Nir ; Chang, Hao-Hsun ; Fenning, David P ; Lux, Simon F ; Paschos, Odysseas ; Bauer, Christoph ; Maglia, Filippo ; Lupart, Saskia ; Lamp, Peter ; Shao-Horn, Yang</creator><creatorcontrib>Gauthier, Magali ; Carney, Thomas J ; Grimaud, Alexis ; Giordano, Livia ; Pour, Nir ; Chang, Hao-Hsun ; Fenning, David P ; Lux, Simon F ; Paschos, Odysseas ; Bauer, Christoph ; Maglia, Filippo ; Lupart, Saskia ; Lamp, Peter ; Shao-Horn, Yang</creatorcontrib><description>Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b01727</identifier><identifier>PMID: 26510477</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2015-11, Vol.6 (22), p.4653-4672</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</citedby><cites>FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b01727$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b01727$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26510477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauthier, Magali</creatorcontrib><creatorcontrib>Carney, Thomas J</creatorcontrib><creatorcontrib>Grimaud, Alexis</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Pour, Nir</creatorcontrib><creatorcontrib>Chang, Hao-Hsun</creatorcontrib><creatorcontrib>Fenning, David P</creatorcontrib><creatorcontrib>Lux, Simon F</creatorcontrib><creatorcontrib>Paschos, Odysseas</creatorcontrib><creatorcontrib>Bauer, Christoph</creatorcontrib><creatorcontrib>Maglia, Filippo</creatorcontrib><creatorcontrib>Lupart, Saskia</creatorcontrib><creatorcontrib>Lamp, Peter</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><title>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EolA4ARLykk1aO47jmB1UBSpVsClLFDnOpKRKnWI7Qt1xB27ISTA0IFas5mv0_x_NQ-iMkhElMR0r7UarjW7A-xEvCBWx2ENHVCZZJGjG9__oATp2bkVIKkkmDtEgTjkliRBH6GnagPa2LeHj7b3XzdYDnhkPtlIacG3wvI5mrcHXyodlDe4STzprwXj8aEqwzitT1maJw8D38BrCrl4-e3eCDirVODjt5xAtbqaLyV00f7idTa7mkWKS-EhAXJQkK5UUqZCMiUoRkZFYSC5jRuKYyTJLC1ZJzrWueJJIpsusoMClrDgbootd7ca2Lx04n69rp6FplIG2czkVnCVJkookWNnOqm3rnIUq39h6rew2pyT_wpoHrHmPNe-xhtR5f6Ar1lD-Zn44BsN4Z_hOt5014d1_Kz8B70uHSg</recordid><startdate>20151119</startdate><enddate>20151119</enddate><creator>Gauthier, Magali</creator><creator>Carney, Thomas J</creator><creator>Grimaud, Alexis</creator><creator>Giordano, Livia</creator><creator>Pour, Nir</creator><creator>Chang, Hao-Hsun</creator><creator>Fenning, David P</creator><creator>Lux, Simon F</creator><creator>Paschos, Odysseas</creator><creator>Bauer, Christoph</creator><creator>Maglia, Filippo</creator><creator>Lupart, Saskia</creator><creator>Lamp, Peter</creator><creator>Shao-Horn, Yang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151119</creationdate><title>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</title><author>Gauthier, Magali ; Carney, Thomas J ; Grimaud, Alexis ; Giordano, Livia ; Pour, Nir ; Chang, Hao-Hsun ; Fenning, David P ; Lux, Simon F ; Paschos, Odysseas ; Bauer, Christoph ; Maglia, Filippo ; Lupart, Saskia ; Lamp, Peter ; Shao-Horn, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Magali</creatorcontrib><creatorcontrib>Carney, Thomas J</creatorcontrib><creatorcontrib>Grimaud, Alexis</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Pour, Nir</creatorcontrib><creatorcontrib>Chang, Hao-Hsun</creatorcontrib><creatorcontrib>Fenning, David P</creatorcontrib><creatorcontrib>Lux, Simon F</creatorcontrib><creatorcontrib>Paschos, Odysseas</creatorcontrib><creatorcontrib>Bauer, Christoph</creatorcontrib><creatorcontrib>Maglia, Filippo</creatorcontrib><creatorcontrib>Lupart, Saskia</creatorcontrib><creatorcontrib>Lamp, Peter</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Magali</au><au>Carney, Thomas J</au><au>Grimaud, Alexis</au><au>Giordano, Livia</au><au>Pour, Nir</au><au>Chang, Hao-Hsun</au><au>Fenning, David P</au><au>Lux, Simon F</au><au>Paschos, Odysseas</au><au>Bauer, Christoph</au><au>Maglia, Filippo</au><au>Lupart, Saskia</au><au>Lamp, Peter</au><au>Shao-Horn, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-11-19</date><risdate>2015</risdate><volume>6</volume><issue>22</issue><spage>4653</spage><epage>4672</epage><pages>4653-4672</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26510477</pmid><doi>10.1021/acs.jpclett.5b01727</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2015-11, Vol.6 (22), p.4653-4672 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753444674 |
source | ACS Publications |
title | Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%E2%80%93Electrolyte%20Interface%20in%20Li-Ion%20Batteries:%20Current%20Understanding%20and%20New%20Insights&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Gauthier,%20Magali&rft.date=2015-11-19&rft.volume=6&rft.issue=22&rft.spage=4653&rft.epage=4672&rft.pages=4653-4672&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b01727&rft_dat=%3Cproquest_cross%3E1753444674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753444674&rft_id=info:pmid/26510477&rfr_iscdi=true |