Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights

Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2015-11, Vol.6 (22), p.4653-4672
Hauptverfasser: Gauthier, Magali, Carney, Thomas J, Grimaud, Alexis, Giordano, Livia, Pour, Nir, Chang, Hao-Hsun, Fenning, David P, Lux, Simon F, Paschos, Odysseas, Bauer, Christoph, Maglia, Filippo, Lupart, Saskia, Lamp, Peter, Shao-Horn, Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4672
container_issue 22
container_start_page 4653
container_title The journal of physical chemistry letters
container_volume 6
creator Gauthier, Magali
Carney, Thomas J
Grimaud, Alexis
Giordano, Livia
Pour, Nir
Chang, Hao-Hsun
Fenning, David P
Lux, Simon F
Paschos, Odysseas
Bauer, Christoph
Maglia, Filippo
Lupart, Saskia
Lamp, Peter
Shao-Horn, Yang
description Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)­Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.
doi_str_mv 10.1021/acs.jpclett.5b01727
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753444674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753444674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EolA4ARLykk1aO47jmB1UBSpVsClLFDnOpKRKnWI7Qt1xB27ISTA0IFas5mv0_x_NQ-iMkhElMR0r7UarjW7A-xEvCBWx2ENHVCZZJGjG9__oATp2bkVIKkkmDtEgTjkliRBH6GnagPa2LeHj7b3XzdYDnhkPtlIacG3wvI5mrcHXyodlDe4STzprwXj8aEqwzitT1maJw8D38BrCrl4-e3eCDirVODjt5xAtbqaLyV00f7idTa7mkWKS-EhAXJQkK5UUqZCMiUoRkZFYSC5jRuKYyTJLC1ZJzrWueJJIpsusoMClrDgbootd7ca2Lx04n69rp6FplIG2czkVnCVJkookWNnOqm3rnIUq39h6rew2pyT_wpoHrHmPNe-xhtR5f6Ar1lD-Zn44BsN4Z_hOt5014d1_Kz8B70uHSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753444674</pqid></control><display><type>article</type><title>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</title><source>ACS Publications</source><creator>Gauthier, Magali ; Carney, Thomas J ; Grimaud, Alexis ; Giordano, Livia ; Pour, Nir ; Chang, Hao-Hsun ; Fenning, David P ; Lux, Simon F ; Paschos, Odysseas ; Bauer, Christoph ; Maglia, Filippo ; Lupart, Saskia ; Lamp, Peter ; Shao-Horn, Yang</creator><creatorcontrib>Gauthier, Magali ; Carney, Thomas J ; Grimaud, Alexis ; Giordano, Livia ; Pour, Nir ; Chang, Hao-Hsun ; Fenning, David P ; Lux, Simon F ; Paschos, Odysseas ; Bauer, Christoph ; Maglia, Filippo ; Lupart, Saskia ; Lamp, Peter ; Shao-Horn, Yang</creatorcontrib><description>Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)­Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b01727</identifier><identifier>PMID: 26510477</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2015-11, Vol.6 (22), p.4653-4672</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</citedby><cites>FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b01727$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b01727$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26510477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauthier, Magali</creatorcontrib><creatorcontrib>Carney, Thomas J</creatorcontrib><creatorcontrib>Grimaud, Alexis</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Pour, Nir</creatorcontrib><creatorcontrib>Chang, Hao-Hsun</creatorcontrib><creatorcontrib>Fenning, David P</creatorcontrib><creatorcontrib>Lux, Simon F</creatorcontrib><creatorcontrib>Paschos, Odysseas</creatorcontrib><creatorcontrib>Bauer, Christoph</creatorcontrib><creatorcontrib>Maglia, Filippo</creatorcontrib><creatorcontrib>Lupart, Saskia</creatorcontrib><creatorcontrib>Lamp, Peter</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><title>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)­Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EolA4ARLykk1aO47jmB1UBSpVsClLFDnOpKRKnWI7Qt1xB27ISTA0IFas5mv0_x_NQ-iMkhElMR0r7UarjW7A-xEvCBWx2ENHVCZZJGjG9__oATp2bkVIKkkmDtEgTjkliRBH6GnagPa2LeHj7b3XzdYDnhkPtlIacG3wvI5mrcHXyodlDe4STzprwXj8aEqwzitT1maJw8D38BrCrl4-e3eCDirVODjt5xAtbqaLyV00f7idTa7mkWKS-EhAXJQkK5UUqZCMiUoRkZFYSC5jRuKYyTJLC1ZJzrWueJJIpsusoMClrDgbootd7ca2Lx04n69rp6FplIG2czkVnCVJkookWNnOqm3rnIUq39h6rew2pyT_wpoHrHmPNe-xhtR5f6Ar1lD-Zn44BsN4Z_hOt5014d1_Kz8B70uHSg</recordid><startdate>20151119</startdate><enddate>20151119</enddate><creator>Gauthier, Magali</creator><creator>Carney, Thomas J</creator><creator>Grimaud, Alexis</creator><creator>Giordano, Livia</creator><creator>Pour, Nir</creator><creator>Chang, Hao-Hsun</creator><creator>Fenning, David P</creator><creator>Lux, Simon F</creator><creator>Paschos, Odysseas</creator><creator>Bauer, Christoph</creator><creator>Maglia, Filippo</creator><creator>Lupart, Saskia</creator><creator>Lamp, Peter</creator><creator>Shao-Horn, Yang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151119</creationdate><title>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</title><author>Gauthier, Magali ; Carney, Thomas J ; Grimaud, Alexis ; Giordano, Livia ; Pour, Nir ; Chang, Hao-Hsun ; Fenning, David P ; Lux, Simon F ; Paschos, Odysseas ; Bauer, Christoph ; Maglia, Filippo ; Lupart, Saskia ; Lamp, Peter ; Shao-Horn, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-7e2bd08da97679337fa0780279592302239d86b3f955ccf54493cd8b1e599f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Magali</creatorcontrib><creatorcontrib>Carney, Thomas J</creatorcontrib><creatorcontrib>Grimaud, Alexis</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Pour, Nir</creatorcontrib><creatorcontrib>Chang, Hao-Hsun</creatorcontrib><creatorcontrib>Fenning, David P</creatorcontrib><creatorcontrib>Lux, Simon F</creatorcontrib><creatorcontrib>Paschos, Odysseas</creatorcontrib><creatorcontrib>Bauer, Christoph</creatorcontrib><creatorcontrib>Maglia, Filippo</creatorcontrib><creatorcontrib>Lupart, Saskia</creatorcontrib><creatorcontrib>Lamp, Peter</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Magali</au><au>Carney, Thomas J</au><au>Grimaud, Alexis</au><au>Giordano, Livia</au><au>Pour, Nir</au><au>Chang, Hao-Hsun</au><au>Fenning, David P</au><au>Lux, Simon F</au><au>Paschos, Odysseas</au><au>Bauer, Christoph</au><au>Maglia, Filippo</au><au>Lupart, Saskia</au><au>Lamp, Peter</au><au>Shao-Horn, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-11-19</date><risdate>2015</risdate><volume>6</volume><issue>22</issue><spage>4653</spage><epage>4672</epage><pages>4653-4672</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)­Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26510477</pmid><doi>10.1021/acs.jpclett.5b01727</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2015-11, Vol.6 (22), p.4653-4672
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1753444674
source ACS Publications
title Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%E2%80%93Electrolyte%20Interface%20in%20Li-Ion%20Batteries:%20Current%20Understanding%20and%20New%20Insights&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Gauthier,%20Magali&rft.date=2015-11-19&rft.volume=6&rft.issue=22&rft.spage=4653&rft.epage=4672&rft.pages=4653-4672&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b01727&rft_dat=%3Cproquest_cross%3E1753444674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753444674&rft_id=info:pmid/26510477&rfr_iscdi=true