Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights

Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2015-11, Vol.6 (22), p.4653-4672
Hauptverfasser: Gauthier, Magali, Carney, Thomas J, Grimaud, Alexis, Giordano, Livia, Pour, Nir, Chang, Hao-Hsun, Fenning, David P, Lux, Simon F, Paschos, Odysseas, Bauer, Christoph, Maglia, Filippo, Lupart, Saskia, Lamp, Peter, Shao-Horn, Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2–x MnO3·(1–y)­Li1–x MO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.5b01727