Gene Content Phylogeny of Herpesviruses
Clusters of orthologous groups [COGs; Tatusov, R. L., Koonin, E. V. & Lipman, D. J. (1997) Science 278, 631-637] were identified for a set of 13 completely sequenced herpesviruses. Each COG represented a family of gene products conserved across several herpes genomes. These families were defined...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2000-05, Vol.97 (10), p.5334-5339 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clusters of orthologous groups [COGs; Tatusov, R. L., Koonin, E. V. & Lipman, D. J. (1997) Science 278, 631-637] were identified for a set of 13 completely sequenced herpesviruses. Each COG represented a family of gene products conserved across several herpes genomes. These families were defined without using an arbitrary threshold criterion based on sequence similarity. The COG technique was modified so that variable stringency in COG construction was possible. High stringencies identify a core set of highly conserved genes. Varying COG stringency reveals differences in the degree of conservation between functional classes of genes. The COG data were used to construct whole-genome phylogenetic trees based on gene content. These trees agree well with trees based on other methods and are robust when tested by bootstrap analysis. The COG data also were used to construct a reciprocal tree that clustered genes with similar phylogenetic profiles. This clustering may give clues to genes with related functions or with related histories of acquisition and loss during herpesvirus evolution. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.97.10.5334 |