Spatio-temporal analyses of stimulus-evoked and spontaneous stochastic neural activity observed by optical imaging in guinea pig auditory cortex
Stimulus-evoked response in the cortex involves random neural activity besides the deterministic responses reproducible to the stimulus. Recently, we have developed a new bright optical system that enables us to investigate the spatio-temporal patterns of such stochastic activity in the guinea pig a...
Gespeichert in:
Veröffentlicht in: | Brain research 2000-04, Vol.861 (2), p.271-280 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stimulus-evoked response in the cortex involves random neural activity besides the deterministic responses reproducible to the stimulus. Recently, we have developed a new bright optical system that enables us to investigate the spatio-temporal patterns of such stochastic activity in the guinea pig auditory cortex without averaging. We show that (1) the stochastic neural activity is evoked by a tone-stimulus in addition to the deterministic response, and spontaneous stochastic activity is also observed in a similar manner; (2) our statistical estimation of optical responses such as variance showed that the evoked stochastic activity was increased by the sound stimulus compared to the spontaneous activity; (3) both types of stochastic activity mainly display oscillatory behavior, in the frequency range of 5–11 Hz; (4) there are no significant differences between the stimulus-induced and spontaneous stochastic neural activity in our statistical analyses using the PSD (power-spectrum density) and the spatial correlation function; (5) the spatial area of the evoked stochastic activity is not strongly correlated with the tonotopical area of the deterministic response that is mainly localized in the caudal area of field A of the guinea pig auditory cortex. Thus, the stochastic neural activity existing in the stimulus response and the spontaneous activity in the auditory cortex are possibly generated by a common neural mechanism. These results were confirmed statistically using 27 animals. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/S0006-8993(00)01991-0 |