Modulation of Photocatalytic Properties by Strain in 2D BiOBr Nanosheets

BiOBr nanosheets with highly reactive {001} facets exposed were selectively synthesized by a facile hydrothermal method. The inner strain in the BiOBr nanosheets has been tuned continuously by the pH value. The photocatalytic performance of BiOBr in dye degradation can be manipulated by the strain e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-12, Vol.7 (50), p.27592-27596
Hauptverfasser: Feng, Haifeng, Xu, Zhongfei, Wang, Liang, Yu, Youxing, Mitchell, David, Cui, Dandan, Xu, Xun, Shi, Ji, Sannomiya, Takumi, Du, Yi, Hao, Weichang, Dou, Shi Xue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BiOBr nanosheets with highly reactive {001} facets exposed were selectively synthesized by a facile hydrothermal method. The inner strain in the BiOBr nanosheets has been tuned continuously by the pH value. The photocatalytic performance of BiOBr in dye degradation can be manipulated by the strain effect. The low-strain BiOBr nanosheets show improved photocatalytic activity. Density functional calculations suggest that strain can modify the band structure and symmetry in BiOBr. The enhanced photocatalytic activity in low-strain BiOBr nanosheets is due to improved charge separation attributable to a highly dispersive band structure with an indirect band gap.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.5b08904