Photosensitized H2 generation from "one-pot" and "two-pot" assemblies of a zinc-porphyrin/platinum nanoparticle/protein scaffold
We report photosensitized H2 generation using a protein scaffold that nucleates formation of platinum nanoparticles (Pt NPs) and contains "built-in" photosensitizers. The photosensitizers, zinc-protoporphyrin IX or zinc-mesoporphyrin IX (ZnP) were incorporated in place of the naturally occ...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2016-01, Vol.45 (2), p.630-638 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report photosensitized H2 generation using a protein scaffold that nucleates formation of platinum nanoparticles (Pt NPs) and contains "built-in" photosensitizers. The photosensitizers, zinc-protoporphyrin IX or zinc-mesoporphyrin IX (ZnP) were incorporated in place of the naturally occurring heme in the 24-subunit iron storage protein bacterioferritin (Bfr) when the ZnPs were added to the E. coli expression medium. We engineered a stable dimeric Bfr variant with two protein subunits sandwiching a ZnP. Ten glycines were also substituted in place of residues surrounding the vinyl side of the porphyrin in order increase access of solvent and/or redox agents. An optimized "one-pot" reaction of this glycine-substituted ZnMP-Bfr dimer with a Pt(iv) salt and borohydride resulted in a ∼50 : 50 mixture of protein in the form of Pt-free glycine-substituted ZnP-Bfr dimers and re-assembled 24-mers surrounding Pt NPs formed in situ. H2 production occurred upon visible light irradiation of this "one-pot" product when combined with triethanolamine as sacrificial electron donor and methyl viologen as electron relay. An analogous "two-pot" system containing mixtures of separately prepared Pt-free glycine-substituted ZnP-Bfr dimer and porphyrin-free Pt NP@Bfr 24-mer also showed robust photosensitized H2 generation. The glycine-substituted-ZnP-Bfr dimer thus served as photosensitizer for catalytic reduction of methyl viologen by triethanolamine, and the reduced methyl viologen was able to transfer electrons across the Bfr 24-mer protein shell to generate H2 at the enclosed Pt NP in a "dark" reaction. Our results demonstrate that Bfr is a readily manipulatable and versatile scaffold for photosensitized redox chemistry. |
---|---|
ISSN: | 1477-9234 |
DOI: | 10.1039/c5dt03418c |