Atomic Structure of Graphene Subnanometer Pores

The atomic structure of subnanometer pores in graphene, of interest due to graphene’s potential as a desalination and gas filtration membrane, is demonstrated by atomic resolution aberration corrected transmission electron microscopy. High temperatures of 500 °C and over are used to prevent self-hea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-12, Vol.9 (12), p.11599-11607
Hauptverfasser: Robertson, Alex W, Lee, Gun-Do, He, Kuang, Gong, Chuncheng, Chen, Qu, Yoon, Euijoon, Kirkland, Angus I, Warner, Jamie H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atomic structure of subnanometer pores in graphene, of interest due to graphene’s potential as a desalination and gas filtration membrane, is demonstrated by atomic resolution aberration corrected transmission electron microscopy. High temperatures of 500 °C and over are used to prevent self-healing of the pores, permitting the successful imaging of open pore geometries consisting of between −4 to −13 atoms, all exhibiting subnanometer diameters. Picometer resolution bond length measurements are used to confirm reconstruction of five-membered ring projections that often decorate the pore perimeter, knowledge which is used to explore the viability of completely self-passivated subnanometer pore structures; bonding configurations where the pore would not require external passivation by, for example, hydrogen to be chemically inert.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b05700