Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals

Plasmon lasers support cavity structures with sizes below that of the diffraction limit. However, most plasmon-based lasers show bidirectional lasing emission or emission with limited far-field directionality and large radiative losses. Here, we report unidirectional lasing from ultrasmooth, templat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-12, Vol.9 (12), p.11582-11588
Hauptverfasser: Yang, Ankun, Li, Zhongyang, Knudson, Michael P, Hryn, Alexander J, Wang, Weijia, Aydin, Koray, Odom, Teri W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmon lasers support cavity structures with sizes below that of the diffraction limit. However, most plasmon-based lasers show bidirectional lasing emission or emission with limited far-field directionality and large radiative losses. Here, we report unidirectional lasing from ultrasmooth, template-stripped two-dimensional (2D) plasmonic crystals. Optically pumped 2D plasmonic crystals (Au or Ag) surrounded by dye molecules exhibited lasing in a single emission direction and their lasing wavelength could be tuned by modulating the dielectric environment. We found that 2D plasmonic crystals were an ideal architecture to screen how nanocavity unit-cell structure, metal material, and gain media affected the lasing response. We discovered that template-stripped strong plasmonic materials with cylindrical posts were an optimal cavity design for a unidirectional laser operating at room temperature.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b05419