Effects of chronic iTBS‐rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark‐reared rats
ABSTRACT Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input duri...
Gespeichert in:
Veröffentlicht in: | Developmental neurobiology (Hoboken, N.J.) N.J.), 2016-01, Vol.76 (1), p.19-33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input during the critical period. We wondered how unspecific activation of the visual cortex before closure of the critical period using repetitive transcranial magnetic stimulation (rTMS) could affect the critical period and the visual performance of the experimental animals. Would it cause premature closure of the plastic state and thus worsen experience‐dependent visual performance, or would it be able to preserve plasticity? Effects of intermittent theta‐burst stimulation (iTBS) were compared with those of an enriched environment (EE) during dark‐rearing (DR) from birth. Rats dark‐reared in a standard cage showed poor improvement in a visual pattern discrimination task, while rats housed in EE or treated with iTBS showed a performance indistinguishable from rats reared in normal light/dark cycle. The behavioral effects were accompanied by correlated changes in the expression of brain‐derived neurotrophic factor (BDNF) and atypical PKC (PKCζ/PKMζ), two factors controlling stabilization of synaptic potentiation. It appears that not only nonvisual sensory activity and exercise but also cortical activation induced by rTMS has the potential to alleviate the effects of DR on cortical development, most likely due to stimulation of BDNF synthesis and release. As we showed previously, iTBS reduced the expression of parvalbumin in inhibitory cortical interneurons, indicating that modulation of the activity of fast‐spiking interneurons contributes to the observed effects of iTBS. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 19–33, 2016 |
---|---|
ISSN: | 1932-8451 1932-846X |
DOI: | 10.1002/dneu.22296 |