Characterization of the microbial community structure and the physicochemical properties of produced water and seawater from the Hibernia oil production platform

Hibernia is Canada’s largest offshore oil platform. Produced water is the major waste byproduct discharged into the ocean. In order to evaluate different potential disposal methods, a comprehensive study was performed to determine the impact from the discharge. Microorganisms are typically the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2015-11, Vol.22 (22), p.17697-17715
Hauptverfasser: Yeung, C. William, Lee, Kenneth, Cobanli, Susan, King, Tom, Bugden, Jay, Whyte, Lyle G, Greer, Charles W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hibernia is Canada’s largest offshore oil platform. Produced water is the major waste byproduct discharged into the ocean. In order to evaluate different potential disposal methods, a comprehensive study was performed to determine the impact from the discharge. Microorganisms are typically the first organisms to respond to changes in their environment. The objectives were to characterize the microbial communities and the chemical composition in the produced water and to characterize changes in the seawater bacterial community around the platform. The results from chemical, physicochemical, and microbial analyses revealed that the discharge did not have a detectable effect on the surrounding seawater. The seawater bacterial community was relatively stable, spatially. Unique microorganisms like Thermoanaerobacter were found in the produced water. Thermoanaerobacter-specific q-PCR and nested-PCR primers were designed, and both methods demonstrated that Thermoanaerobacter was present in seawater up to 1000 m from the platform. These methods could be used to track the dispersion of produced water into the surrounding ocean.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-015-4947-z