Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach
Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long‐standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2015-07, Vol.24 (14), p.3628-3638 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long‐standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White‐breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE – disentangled from IBD – in sky island vertebrates and identify potential adaptive genetic variation. |
---|---|
ISSN: | 0962-1083 1365-294X |
DOI: | 10.1111/mec.13258 |