Nicergoline inhibits human platelet Ca(2+) signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure
Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has...
Gespeichert in:
Veröffentlicht in: | British journal of pharmacology 2016-01, Vol.173 (1), p.234-247 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion.
Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase.
Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion.
Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics. |
---|---|
ISSN: | 1476-5381 |
DOI: | 10.1111/bph.13361 |