Pressure-driven suppression of the Jahn-Teller effects and structural changes in cupric oxide

Multiferroics have been of interest as materials for use in data storage due to their coexisting ferroelectric and ferromagnetic properties. The properties of cupric oxide have been studied at pressures below 70 GPa, and it has even been suggested that it may be a room temperature multiferroic at pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2016-01, Vol.28 (2), p.025401-025401
Hauptverfasser: Greschner, Michael J, Chen, Ning, Yao, Yansun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiferroics have been of interest as materials for use in data storage due to their coexisting ferroelectric and ferromagnetic properties. The properties of cupric oxide have been studied at pressures below 70 GPa, and it has even been suggested that it may be a room temperature multiferroic at pressures of 20 to 40 GPa. However, the properties of cupric oxide above these pressures have yet to be thoroughly examined. Here, we investigate changes in the crystal structure of cupric oxide via first principles methods. We find that the crystal structure transforms from a monoclinic structure at low pressure to a face-centred cubic and body-centred cubic structure at high pressure. We also find that the magnetic ordering switches from antiferromagnetic in the monoclinic phase to net zero magnetic moment in the face-centred cubic phase and ferromagnetic in the body-centred cubic phase. This shift in magnetic ordering is due to the superexchange interactions and Jahn-Teller instabilities, or the lack of thereof, arising from the d-orbital electrons of the cupric ions, which disrupt the mechanical stability of other possible magnetic orderings.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/28/2/025401