Patterns of Trichothecene Production, Genetic Variability, and Virulence to Wheat of Fusarium graminearum from Smallholder Farms in Nepal
Fusarium graminearum causes wheat head blight and contaminates grain with the trichothecenes 4-deoxynivalenol and nivalenol. Sequence analysis of trichothecene genes indicates that nivalenol production is the ancestral trait; however, deoxynivalenol producers occur worldwide and predominate in North...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2004-10, Vol.52 (20), p.6341-6346 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fusarium graminearum causes wheat head blight and contaminates grain with the trichothecenes 4-deoxynivalenol and nivalenol. Sequence analysis of trichothecene genes indicates that nivalenol production is the ancestral trait; however, deoxynivalenol producers occur worldwide and predominate in North and South America and in Europe. Analysis of a large field population (>500 strains) from Nepal identified three groups that were both genetically distinct and polymorphic for trichothecene production: SCAR1 comprising 95% deoxynivalenol producers, SCAR2 comprising 94% nivalenol producers, and SCAR3/5 comprising 34% deoxynivalenol producers/63% nivalenol producers. The ability to cause wheat head blight differed between SCAR groups and trichothecene chemotypes: deoxynivalenol producers were more virulent than nivalenol producers across all three SCAR groups and within the SCAR3/5 genetic background. These data support the hypothesis that production of deoxynivalenol rather than nivalenol confers a selective advantage to this important wheat pathogen. Keywords: Trichothecenes; Fusarium; wheat head blight; Triticum aestivum |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf040181e |