TMSmesh: A Robust Method for Molecular Surface Mesh Generation Using a Trace Technique

Qualified, stable, and efficient molecular surface meshing appears to be necessitated by recent developments for realistic mathematical modeling and numerical simulation of biomolecules, especially in implicit solvent modeling (e.g., see a review in B. Z. Lu et al. Commun. Comput. Phys. 2008, 3, 973...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2011-01, Vol.7 (1), p.203-212
Hauptverfasser: Chen, Minxin, Lu, Benzhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Qualified, stable, and efficient molecular surface meshing appears to be necessitated by recent developments for realistic mathematical modeling and numerical simulation of biomolecules, especially in implicit solvent modeling (e.g., see a review in B. Z. Lu et al. Commun. Comput. Phys. 2008, 3, 973−1009). In this paper, we present a new method: tracing molecular surface for meshing (TMSmesh) the Gaussian surface of biomolecules. The method computes the surface points by solving a nonlinear equation directly, polygonizes by connecting surface points through a trace technique, and finally outputs a triangulated mesh. TMSmesh has a linear complexity with respect to the number of atoms and is shown to be capable of handling molecules consisting of more than one million atoms, which is usually difficult for the existing methods for surface generation used in molecular visualization and geometry analysis. Moreover, the meshes generated by TMSmesh are successfully tested in boundary element solutions of the Poisson−Boltzmann equation, which directly gives rise to a route to simulate electrostatic solvation of large-scale molecular systems. The binary version of TMSmesh and a set of representative PQR benchmark molecules are downloadable at our Web page http://lsec.cc.ac.cn/∼lubz/Meshing.html.
ISSN:1549-9618
1549-9626
DOI:10.1021/ct100376g