Inhibition of Protein-tyrosine Phosphatases by Mild Oxidative Stresses Is Dependent on S-Nitrosylation

Previous studies have shown that a Ca2+-dependent nitric-oxide synthase (NOS) is activated as part of a cellular response to low doses of ionizing radiation. Genetic and pharmacological inhibitor studies linked this NO signaling to the radiation-induced activation of ERK1/2. Herein, a mechanism for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-04, Vol.280 (15), p.14453-14461
Hauptverfasser: Barrett, Daniel M., Black, Stephen M., Todor, Horia, Schmidt-Ullrich, Rupert K., Dawson, Kathryn S., Mikkelsen, Ross B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have shown that a Ca2+-dependent nitric-oxide synthase (NOS) is activated as part of a cellular response to low doses of ionizing radiation. Genetic and pharmacological inhibitor studies linked this NO signaling to the radiation-induced activation of ERK1/2. Herein, a mechanism for the radiation-induced activation of Tyr phosphorylation-dependent pathways (e.g. ERK1/2) involving the inhibition of protein-Tyr phosphatases (PTPs) by S-nitrosylation is tested. The basis for this mechanism resides in the redox-sensitive active site Cys in PTPs. These studies also examined oxidative stress induced by low concentrations of H2O2. S-Nitrosylation of total cellular PTP and immunopurified SHP-1 and SHP-2 was detected as protection of PTP enzymatic activity from alkylation by N-ethylmaleimide and reversal by ascorbate. Both radiation and H2O2 protected PTP activity from alkylation by a mechanism reversible by ascorbate and inhibited by NOS inhibitors or expression of a dominant negative mutant of NOS-1. Radiation and H2O2 stimulated a transient increase in cytoplasmic free [Ca2+]. Radiation, H2O2, and the Ca2+ ionophore, ionomycin, also stimulated NOS activity, and this was associated with an enhanced S-nitrosylation of the active site Cys453 determined by isolation of S-nitrosylated wild type but not active site Cys453 → Ser SHP-1 mutant by the “biotin-switch” method. Thus, one consequence of oxidative stimulation of NO generation is S-nitrosylation and inhibition of PTPs critical in cellular signal transduction pathways. These results support the conclusion that a mild oxidative signal is converted to a nitrosative one due to the better redox signaling properties of NO.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M411523200