Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering
With recent advances in biomolecular engineering, the bioremediation of persistent organic pollutants (POPs) using genetically modified microorganisms has become a rapidly growing area of research for environmental protection. Two main biomolecular approaches, rational design and directed evolution,...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2005-10, Vol.37 (5), p.487-496 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With recent advances in biomolecular engineering, the bioremediation of persistent organic pollutants (POPs) using genetically modified microorganisms has become a rapidly growing area of research for environmental protection. Two main biomolecular approaches, rational design and directed evolution, have been developed to engineer enhanced microorganisms and enzymes for the biodegradation of POPs. This review describes the most recent developments and applications of these biomolecular tools for enhancing the capability of microorganisms to bioremediate three major classes of POPs – polycyclic aromatic hydrocabons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Most of the examples focused on the redesign of various features of the enzymes involved in the bioremediation of POPs, including the enzyme expression level, enzymatic activity and substrate specificity. Overall, the rapidly expanding potential of biomolecular engineering techniques has created the exciting potential of remediating some of the most recalcitrant and hazardous compounds in the environment. |
---|---|
ISSN: | 0141-0229 1879-0909 |
DOI: | 10.1016/j.enzmictec.2004.07.024 |