Stereospecificity in the enzymatic hydrolysis of cyclosarin (GF)

Enzymatic catalysis is one means of accelerating the rate of hydrolysis of G-type organophosphorus nerve agents. Here, the stereospecificity of the catalysis of cyclosarin (GF, O-cyclohexyl methylphosphonofluoridate) hydrolysis by several enzymes was investigated. Stereospecificity was not evident a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 2005-10, Vol.37 (5), p.547-555
Hauptverfasser: Harvey, Steven P., Kolakowski, Jan E., Cheng, Tu-Chen, Rastogi, Vipin K., Reiff, Louis P., DeFrank, Joseph J., Raushel, Frank M., Hill, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymatic catalysis is one means of accelerating the rate of hydrolysis of G-type organophosphorus nerve agents. Here, the stereospecificity of the catalysis of cyclosarin (GF, O-cyclohexyl methylphosphonofluoridate) hydrolysis by several enzymes was investigated. Stereospecificity was not evident at 3 mM GF but was evident at 0.5 mM GF. The differential effect was apparently due to fluoride-catalyzed racemization of the substrate. Alteromonas sp. JD6.5 organophosphorus acid anhydrolase (OPAA), Alteromonas haloplanktis OPAA and the wild-type phosphotriesterase (PTE) enzymes were all found to catalyze preferentially the hydrolysis of the (+)GF isomer, as determined by GC analysis of the remaining unreacted (−)GF isomer. Acetylcholinesterase inhibition experiments showed the purified (−)GF isomer to be approximately twice as toxic as the racemic mixture. One PTE mutant, H254G/H259W/L303T, was found to reverse the native PTE stereospecificity and preferentially catalyze the hydrolysis of the (−)GF isomer, as shown by its complementation of Alteromonas sp. JD6.5 OPAA and by GC analysis of the remaining (+)GF isomer. This procedure also permitted the individual preparation of either of the two GF isomers by enzymatic degradation followed by extraction of the remaining isomer.
ISSN:0141-0229
1879-0909
DOI:10.1016/j.enzmictec.2005.04.004