Structural Mapping of Functional Ge Layers Grown on Graded SiGe Buffers for sub-10 nm CMOS Applications Using Advanced X‑ray Nanodiffraction
We report a detailed advanced materials characterization study on 40 nm thick strained germanium (Ge) layers integrated on 300 mm Si(001) wafers via strain-relaxed silicon–germanium (SiGe) buffer layers. Fast-scanning X-ray microscopy is used to directly image structural inhomogeneities, lattice til...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-12, Vol.7 (48), p.26696-26700 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a detailed advanced materials characterization study on 40 nm thick strained germanium (Ge) layers integrated on 300 mm Si(001) wafers via strain-relaxed silicon–germanium (SiGe) buffer layers. Fast-scanning X-ray microscopy is used to directly image structural inhomogeneities, lattice tilt, thickness, and strain of a functional Ge layer down to the sub-micrometer scale with a real space step size of 750 μm. The structural study shows that the metastable Ge layer, pseudomorphically grown on Si0.3Ge0.7, exhibits an average compressive biaxial strain of −1.27%. By applying a scan area of 100 × 100 μm2, we observe microfluctuations of strain, lattice tilt, and thickness of ca. ±0.03%, ±0.05°, and ±0.8 nm, respectively. This study confirms the high materials homogeneity of the compressively strained Ge layer realized by the step-graded SiGe buffer approach on 300 mm Si wafers. This presents thus a promising materials science approach for advanced sub-10 nm complementary metal oxide–semiconductor applications based on strain-engineered Ge transistors to outperform current Si channel technologies. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b08645 |