Kinetics of the glass transition of fragile soft colloidal suspensions
Microscopic relaxation time scales are estimated from the autocorrelation functions obtained by dynamic light scattering experiments for Laponite suspensions with different concentrations (CL), added salt concentrations (CS), and temperatures (T). It has been shown in an earlier work [D. Saha, Y. M....
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-12, Vol.143 (21), p.214901-214901 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microscopic relaxation time scales are estimated from the autocorrelation functions obtained by dynamic light scattering experiments for Laponite suspensions with different concentrations (CL), added salt concentrations (CS), and temperatures (T). It has been shown in an earlier work [D. Saha, Y. M. Joshi, and R. Bandyopadhyay, Soft Matter 10, 3292 (2014)] that the evolutions of relaxation time scales of colloidal glasses can be compared with molecular glass formers by mapping the waiting time (tw) of the former with the inverse of thermodynamic temperature (1/T) of the latter. In this work, the fragility parameter D, which signifies the deviation from Arrhenius behavior, is obtained from fits to the time evolutions of the structural relaxation time scales. For the Laponite suspensions studied in this work, D is seen to be independent of CL and CS but is weakly dependent on T. Interestingly, the behavior of D corroborates the behavior of fragility in molecular glass formers with respect to equivalent variables. Furthermore, the stretching exponent β, which quantifies the width w of the spectrum of structural relaxation time scales, is seen to depend on tw. A hypothetical Kauzmann time tk, analogous to the Kauzmann temperature for molecular glasses, is defined as the time scale at which w diverges. Corresponding to the Vogel temperature defined for molecular glasses, a hypothetical Vogel time tα (∞) is also defined as the time at which the structural relaxation time diverges. Interestingly, a correlation is observed between tk and tα (∞), which is remarkably similar to that known for fragile molecular glass formers. A coupling model that accounts for the tw-dependence of the stretching exponent is used to analyse and explain the observed correlation between tk and tα (∞). |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4936625 |