Vertically Integrated Multiple Nanowire Field Effect Transistor

A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-12, Vol.15 (12), p.8056-8061
Hauptverfasser: Lee, Byung-Hyun, Kang, Min-Ho, Ahn, Dae-Chul, Park, Jun-Young, Bang, Tewook, Jeon, Seung-Bae, Hur, Jae, Lee, Dongil, Choi, Yang-Kyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.5b03460