Methyl 3-Hydroxymyristate, a Diffusible Signal Mediating phc Quorum Sensing in Ralstonia solanacearum

Ralstonia solanacearum, a plant pathogenic bacterium causing “bacterial wilt” on crops, uses a quorum sensing (QS) system consisting of phc regulatory elements to control its virulence. Methyl 3‐hydroxypalmitate (3‐OH PAME) was previously identified as the QS signal in strain AW1. However, 3‐OH PAME...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2015-11, Vol.16 (16), p.2309-2318
Hauptverfasser: Kai, Kenji, Ohnishi, Hideyuki, Shimatani, Mika, Ishikawa, Shiho, Mori, Yuka, Kiba, Akinori, Ohnishi, Kouhei, Tabuchi, Mitsuaki, Hikichi, Yasufumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ralstonia solanacearum, a plant pathogenic bacterium causing “bacterial wilt” on crops, uses a quorum sensing (QS) system consisting of phc regulatory elements to control its virulence. Methyl 3‐hydroxypalmitate (3‐OH PAME) was previously identified as the QS signal in strain AW1. However, 3‐OH PAME has not been reportedly detected from any other strains, and this suggests that they produce another unknown QS signal. Here we identify (R)‐methyl 3‐hydroxymyristate [(R)‐3‐OH MAME] as a new QS signal that regulates the production of virulence factors and secondary metabolites. (R)‐3‐OH MAME was synthesized by the methyltransferase PhcB and sensed by the histidine kinase PhcS. The phylogenetic trees of these proteins from R. solanacearum strains were divided into two groups, according to their QS signal types—(R)‐3‐OH MAME or (R)‐3‐OH PAME. These results demonstrate that (R)‐3‐OH MAME is another crucial QS signal and highlight the unique evolution of QS systems in R. solanacearum. Chemical signaling in Ralstonia: We report that (R)‐methyl 3‐hydroxymyristate [(R)‐3‐OH MAME] is a quorum sensing (QS) signal that regulates the production of virulence factors in Ralstonia solanacearum strain OE1‐1. (R)‐3‐OH MAME was also produced by many other strains. Thus, the compound is another Ralstonia QS signal that has been overlooked for nearly two decades.
ISSN:1439-4227
1439-7633
DOI:10.1002/cbic.201500456