Oxypurinol-Specific T Cells Possess Preferential TCR Clonotypes and Express Granulysin in Allopurinol-Induced Severe Cutaneous Adverse Reactions
Allopurinol, a first-line drug for treating gout and hyperuricemia, is one of the leading causes of severe cutaneous adverse reactions (SCARs). To investigate the molecular mechanism of allopurinol-induced SCAR, we enrolled 21 patients (13 Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (T...
Gespeichert in:
Veröffentlicht in: | Journal of investigative dermatology 2015-09, Vol.135 (9), p.2237-2248 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Allopurinol, a first-line drug for treating gout and hyperuricemia, is one of the leading causes of severe cutaneous adverse reactions (SCARs). To investigate the molecular mechanism of allopurinol-induced SCAR, we enrolled 21 patients (13 Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and 8 drug reaction with eosinophilia and systemic symptoms (DRESS)), 11 tolerant controls, and 23 healthy donors. We performed in vitro T-cell activation assays by culturing peripheral blood mononuclear cells (PBMCs) with allopurinol, oxypurinol, or febuxostat and measuring the expression of granulysin and IFN-γ in the supernatants of cultures. TCR repertoire was investigated by next-generation sequencing. Oxypurinol stimulation resulted in a significant increase in granulysin in the cultures of blood samples from SCAR patients (n=14) but not tolerant controls (n=11) or healthy donors (n=23). Oxypurinol induced T-cell response in a concentration- and time-dependent manner, whereas allopurinol or febuxostat did not. T cells from patients with allopurinol–SCAR showed no crossreactivity with febuxostat. Preferential TCR-V-β usage and clonal expansion of specific CDR3 (third complementarity-determining region) were found in the blister cells from skin lesions (n=8) and oxypurinol-activated T-cell cultures (n=4) from patients with allopurinol–SCAR. These data suggest that, in addition to HLA-B*58:01, clonotype-specific T cells expressing granulysin upon oxypurinol induction participate in the pathogenesis of allopurinol-induced SCAR. |
---|---|
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1038/jid.2015.165 |