Comparative analysis of neural differentiation potential in human mesenchymal stem cells derived from chorion and adult bone marrow

The finding of a reliable and abundant source of stem cells for the replacement of missing neurons in nervous system diseases requires extensive characterization of neural-differentiation-associated markers in stem cells from various sources. Chorion-derived stem cells from the human placenta have r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2015-11, Vol.362 (2), p.367-377
Hauptverfasser: Ziadlou, Reihane, Shahhoseini, Maryam, Safari, Fatemeh, Sayahpour, Forugh-Azam, Nemati, Shiva, Eslaminejad, Mohamadreza Baghaban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finding of a reliable and abundant source of stem cells for the replacement of missing neurons in nervous system diseases requires extensive characterization of neural-differentiation-associated markers in stem cells from various sources. Chorion-derived stem cells from the human placenta have recently been described as an abundant, ethically acceptable, and easily accessible source of cells that are not limited in the same way as bone marrow (BM) mesenchymal stem cells (MSCs). We have isolated and cultured chorion MSCs (C-MSCs) and compared their proliferative capacity, multipotency, and neural differentiation ability with BM-MSCs. C-MSCs showed a higher proliferative capacity compared with BM-MSCs. The expression and histone modification of Nestin , as a marker for neural stem/progenitor cells, was evaluated quantitatively between the two groups. The Nestin expression level in C-MSCs was significantly higher than that in BM-MSCs. Notably, modifications of lys9, lys4, and lys27 of histone H3 agreed with the remarkable higher expression of Nestin in C-MSCs than in BM-MSCs. Furthermore, after neural differentiation of MSCs upon retinoic acid induction, both immunocytochemical and flow cytometry analyses demonstrated that the expression of neural marker genes was significantly higher in neural-induced C-MSCs compared with BM-MSCs. Mature neuron marker genes were also expressed at a significantly higher level in C-MSCs than in BM-MSCs. Thus, C-MSCs have a greater potential than BM-MSCs for differentiation to neural cell lineages and can be regarded as a promising source of stem cells for the cell therapy of neurological disorders.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-015-2210-z