Evaluating DNA Damage in Rodent Brain after Acute 60 Hz Magnetic-Field Exposure

In recent years, numerous studies have reported a weak association between 60 Hz magnetic-field exposure and the incidence of certain cancers. To date, no mechanism to explain these findings has been identified. The objective of the current study was to investigate whether acute magnetic-field expos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation research 2005-12, Vol.164 (6), p.791-797
Hauptverfasser: McNamee, J P, Bellier, P V, Chauhan, V, Gajda, G B, Lemay, E, Thansandote, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, numerous studies have reported a weak association between 60 Hz magnetic-field exposure and the incidence of certain cancers. To date, no mechanism to explain these findings has been identified. The objective of the current study was to investigate whether acute magnetic-field exposure could elicit DNA damage within brain cells from both whole brain and cerebellar homogenates from adult rats, adult mice and immature mice. Rodents were exposed to a 60 Hz magnetic field (0, 0.1, 1 or 2 mT) for 2 h. Then, at 0, 2 and 4 h after exposure, animals were killed humanely, their brains were rapidly removed and homogenized, and cells were cast into agarose gels for processing by the alkaline comet assay. Four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. For each species, a significant increase in DNA damage was detected by each of the four parameters in the positive control (2 Gy X rays) relative to the concurrent nonirradiated negative and sham controls. However, none of the four parameters detected a significant increase in DNA damage in brain cell homogenates from any magnetic-field exposure (0- 2 mT) at any time after exposure. The dose-response and time-course data from the multiple animal groups tested in this study provide no evidence of magnetic-field-induced DNA damage.
ISSN:0033-7587
DOI:10.1043/0033-7587(2005)164[0791:EDDIRB]2.0.CO;2