Critical roles for polymerase ζ in cellular tolerance to nitric oxide-induced DNA damage
Nitric oxide (NO), a signal transmitter involved in inflammation and regulation of smooth muscle and neurons, seems to cause mutagenesis, but its mechanisms have remained elusive. To gain an insight into NO-induced genotoxicity, we analyzed the effect of NO on a panel of chicken DT40 clones deficien...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2006-01, Vol.66 (2), p.748-754 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitric oxide (NO), a signal transmitter involved in inflammation and regulation of smooth muscle and neurons, seems to cause mutagenesis, but its mechanisms have remained elusive. To gain an insight into NO-induced genotoxicity, we analyzed the effect of NO on a panel of chicken DT40 clones deficient in DNA repair pathways, including base and nucleotide excision repair, double-strand break repair, and translesion DNA synthesis (TLS). Our results show that cells deficient in Rev1 and Rev3, a subunit essential for DNA polymerase zeta (Polzeta), are hypersensitive to killing by two chemical NO donors, spermine NONOate and S-nitroso-N-acetyl-penicillamine. Mitotic chromosomal analysis indicates that the hypersensitivity is caused by a significant increase in the level of induced chromosomal breaks. The data reveal the critical role of TLS polymerases in cellular tolerance to NO-induced DNA damage and suggest the contribution of these error-prone polymerases to accumulation of single base substitutions. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-05-2884 |