Critical roles for polymerase ζ in cellular tolerance to nitric oxide-induced DNA damage

Nitric oxide (NO), a signal transmitter involved in inflammation and regulation of smooth muscle and neurons, seems to cause mutagenesis, but its mechanisms have remained elusive. To gain an insight into NO-induced genotoxicity, we analyzed the effect of NO on a panel of chicken DT40 clones deficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2006-01, Vol.66 (2), p.748-754
Hauptverfasser: XIAOHUA WU, TAKENAKA, Katsuya, SONODA, Eiichiro, HOCHEGGER, Helfrid, KAWANISHI, Shosuke, KAWAMOTO, Takuo, TAKEDA, Shunichi, YAMAZOE, Mitsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide (NO), a signal transmitter involved in inflammation and regulation of smooth muscle and neurons, seems to cause mutagenesis, but its mechanisms have remained elusive. To gain an insight into NO-induced genotoxicity, we analyzed the effect of NO on a panel of chicken DT40 clones deficient in DNA repair pathways, including base and nucleotide excision repair, double-strand break repair, and translesion DNA synthesis (TLS). Our results show that cells deficient in Rev1 and Rev3, a subunit essential for DNA polymerase zeta (Polzeta), are hypersensitive to killing by two chemical NO donors, spermine NONOate and S-nitroso-N-acetyl-penicillamine. Mitotic chromosomal analysis indicates that the hypersensitivity is caused by a significant increase in the level of induced chromosomal breaks. The data reveal the critical role of TLS polymerases in cellular tolerance to NO-induced DNA damage and suggest the contribution of these error-prone polymerases to accumulation of single base substitutions.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-05-2884