The neurotransmitter serotonin interrupts α-synuclein amyloid maturation
Indolic derivatives can affect fibril growth of amyloid forming proteins. The neurotransmitter serotonin (5-HT) is of particular interest, as it is an endogenous molecule with a possible link to neuropsychiatric symptoms of Parkinson disease. A key pathomolecular mechanism of Parkinson disease is th...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2011-05, Vol.1814 (5), p.553-561 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Indolic derivatives can affect fibril growth of amyloid forming proteins. The neurotransmitter serotonin (5-HT) is of particular interest, as it is an endogenous molecule with a possible link to neuropsychiatric symptoms of Parkinson disease. A key pathomolecular mechanism of Parkinson disease is the misfolding and aggregation of the intrinsically unstructured protein α-synuclein. We performed a biophysical study to investigate an influence between these two molecules. In an isolated in vitro system, 5-HT interfered with α-synuclein amyloid fiber maturation, resulting in the formation of partially structured, SDS-resistant intermediate aggregates. The C-terminal region of α-synuclein was essential for this interaction, which was driven mainly by electrostatic forces. 5-HT did not bind directly to monomeric α-synuclein molecules and we propose a model where 5-HT interacts with early intermediates of α-synuclein amyloidogenesis, which disfavors their further conversion into amyloid fibrils.
► The neurotransmitter serotonin (5-HT) suppresses amyloid fibril growth of alpha-synuclein (AS). ► 5-HT binds to intermediate aggregates of alpha-synuclein, not to monomeric AS. Consequently, 5-HT does not influence initial steps of amyloidogenesis. ► 5-HT promotes the accumulation of partially structured, SDS-resistant “on pathway” aggregates of AS. ► The C-terminal region of AS is essential for a charge dependent interaction. ► “On pathway” and “off-pathway” aggregations of AS might mechanistically overlap. |
---|---|
ISSN: | 1570-9639 0006-3002 1878-1454 1878-1454 |
DOI: | 10.1016/j.bbapap.2011.02.008 |