Interleukin-10 Signaling Blocks Inhibitor of κB Kinase Activity and Nuclear Factor κB DNA Binding

The transcription factor nuclear factor κB (NF-κB) coordinates the activation of numerous genes in response to pathogens and proinflammatory cytokines and is, therefore, pivotal in the development of acute and chronic inflammatory diseases. In its inactive state, NF-κB is constitutively present in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-11, Vol.274 (45), p.31868-31874
Hauptverfasser: Schottelius, Arndt J.G., Mayo, Marty W., Sartor, R. Balfour, Baldwin, Albert S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transcription factor nuclear factor κB (NF-κB) coordinates the activation of numerous genes in response to pathogens and proinflammatory cytokines and is, therefore, pivotal in the development of acute and chronic inflammatory diseases. In its inactive state, NF-κB is constitutively present in the cytoplasm as a p50-p65 heterodimer bound to its inhibitory protein IκB. Proinflammatory cytokines, such as tumor necrosis factor (TNF), activate NF-κB by stimulating the activity of the IκB kinases (IKKs) which phosphorylate IκBα on serine residues 32 and 36, targeting it for rapid degradation by the 26 S proteasome. This enables the release and nuclear translocation of the NF-κB complex and activation of gene transcription. Interleukin-10 (IL-10) is a pleiotropic cytokine that controls inflammatory processes by suppressing the production of proinflammatory cytokines which are known to be transcriptionally controlled by NF-κB. Conflicting data exists on the effects of IL-10 on TNF- and LPS-induced NF-κB activity in human monocytes and the molecular mechanisms involved have not been elucidated. In this study, we show that IL-10 functions to block NF-κB activity at two levels: 1) through the suppression of IKK activity and 2) through the inhibition of NF-κB DNA binding activity. This is the first evidence of an anti-inflammatory protein inhibiting IKK activity and demonstrates that IKK is a logical target for blocking inflammatory diseases.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.45.31868