Relationships between Gulf of California Moisture Surges and Tropical Cyclones in the Eastern Pacific Basin

Relationships between Gulf of California moisture surges and tropical cyclones (TCs) in the eastern Pacific basin are examined. Standard surface observations are used to identify gulf surge events at Yuma, Arizona, for a multiyear (July–August 1979–2001) period. The surges are related to TCs using N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2005-11, Vol.18 (22), p.4601-4620
Hauptverfasser: Higgins, R. W., Shi, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Relationships between Gulf of California moisture surges and tropical cyclones (TCs) in the eastern Pacific basin are examined. Standard surface observations are used to identify gulf surge events at Yuma, Arizona, for a multiyear (July–August 1979–2001) period. The surges are related to TCs using National Hurricane Center 6-hourly track data for the eastern Pacific basin. Climate Prediction Center (CPC)-observed daily precipitation analyses and the NCEP Regional Reanalysis are used to examine the relative differences in the precipitation, atmospheric circulation, and moisture fields for several categories of surge events, including those that are directly related to TCs, indirectly related to TCs, and not related to TCs. It is shown that the response to the surge in the southwestern United States and northwestern Mexico is strongly discriminated by the presence or absence of TCs. Surges related to TCs tend to be associated with much stronger and deeper low-level southerly flow, deeper plumes of tropical moisture, and wetter conditions over the core monsoon region than surges that are unrelated to TCs. The response to the surge is also strongly influenced by the proximity of the TC to the Gulf of California (GOC) region. Tropical cyclones that track toward the GOC region exert a stronger, more direct influence on Yuma surges than those that track away from the GOC.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI3551.1