Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning

Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2015-01, Vol.53 (1), p.261-279
Hauptverfasser: Zhang, Qian, Tian, Yuan, Yang, Yiping, Pan, Chunhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 1
container_start_page 261
container_title IEEE transactions on geoscience and remote sensing
container_volume 53
creator Zhang, Qian
Tian, Yuan
Yang, Yiping
Pan, Chunhong
description Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the dimensionality reduction techniques, i.e., feature selection, are applied before subsequent utilizations. However, such representation can introduce redundancy and noise. Moreover, traditional single-feature selection methods treat different features equally and ignore their complementary properties. As a result, the performance of subsequent tasks, i.e., classification, would drop down. In this paper, we propose a novel approach to integrate the spectral-spatial features based on the concatenating strategy, termed discriminative sparse multimodal learning for feature selection (DSML-FS). In the proposed method, joint structured sparsity regularizations are used to exploit the intrinsic data structure and relationships among different features. Discriminative least squares regression is applied to enlarge the distance between classes. Therefore, the weight matrix incorporating the information of feature wise and individual properties is automatically learned for spectral-spatial feature selection. We develop an alternative iterative algorithm to solve the nonlinear optimization problem in DSML-FS with global convergence. We systematically evaluate the proposed algorithm on three available hyperspectral data sets, and the encouraging experimental results demonstrate the effectiveness of DSML-FS.
doi_str_mv 10.1109/TGRS.2014.2321405
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744720163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819451</ieee_id><sourcerecordid>1744720163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-b88dacf550bda9c762bf4465291873657729f493afcbeddf75ea6c7734dea9573</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMoOF4eQNwU3LjpmKS5NEvxDiOCHdchk54Okd5M2oF5e1NmdOHG1YHDdz6S_0foguA5IVjdLJ_eiznFhM1pRgnD_ADNCOd5igVjh2iGiRIpzRU9RichfOJIciJnyN-OQ9eYwdmk6OMwdVr0YAdv6uQRzDB6SAqo48Z1bVJ1Pnne9uDDD_PSmDUkG2eSexesd41ro2UDk80HSF7HenBNV0Z0Aca3rl2foaPK1AHO9_MUfTw-LO-e08Xb08vd7SK1TPEhXeV5aWzFOV6VRlkp6KpiTHCqSC4zwaWkqmIqM5VdQVlWkoMRVsqMlWAUl9kput55e999jRAG3cQnQl2bFroxaCIZkzEykf2PCoqxJJjiiF79QT-70bfxIzrmzWPO0RopsqOs70LwUOk-ZmP8VhOsp8L0VJieCtP7wuLN5e7GAcAvL_Jo5CT7BkFukpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555019447</pqid></control><display><type>article</type><title>Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qian ; Tian, Yuan ; Yang, Yiping ; Pan, Chunhong</creator><creatorcontrib>Zhang, Qian ; Tian, Yuan ; Yang, Yiping ; Pan, Chunhong</creatorcontrib><description>Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the dimensionality reduction techniques, i.e., feature selection, are applied before subsequent utilizations. However, such representation can introduce redundancy and noise. Moreover, traditional single-feature selection methods treat different features equally and ignore their complementary properties. As a result, the performance of subsequent tasks, i.e., classification, would drop down. In this paper, we propose a novel approach to integrate the spectral-spatial features based on the concatenating strategy, termed discriminative sparse multimodal learning for feature selection (DSML-FS). In the proposed method, joint structured sparsity regularizations are used to exploit the intrinsic data structure and relationships among different features. Discriminative least squares regression is applied to enlarge the distance between classes. Therefore, the weight matrix incorporating the information of feature wise and individual properties is automatically learned for spectral-spatial feature selection. We develop an alternative iterative algorithm to solve the nonlinear optimization problem in DSML-FS with global convergence. We systematically evaluate the proposed algorithm on three available hyperspectral data sets, and the encouraging experimental results demonstrate the effectiveness of DSML-FS.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2014.2321405</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automation ; Data structures ; Discriminative sparse multimodal learning ; Drafting ; Feature based ; Feature extraction ; feature selection ; hyperspectral classification ; Hyperspectral imaging ; Iterative algorithms ; Joints ; Learning ; Noise ; Optimization ; Remote sensing ; Software packages ; Sparse matrices ; Spectra ; spectral-spatial feature ; Vectors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-01, Vol.53 (1), p.261-279</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-b88dacf550bda9c762bf4465291873657729f493afcbeddf75ea6c7734dea9573</citedby><cites>FETCH-LOGICAL-c495t-b88dacf550bda9c762bf4465291873657729f493afcbeddf75ea6c7734dea9573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Yang, Yiping</creatorcontrib><creatorcontrib>Pan, Chunhong</creatorcontrib><title>Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the dimensionality reduction techniques, i.e., feature selection, are applied before subsequent utilizations. However, such representation can introduce redundancy and noise. Moreover, traditional single-feature selection methods treat different features equally and ignore their complementary properties. As a result, the performance of subsequent tasks, i.e., classification, would drop down. In this paper, we propose a novel approach to integrate the spectral-spatial features based on the concatenating strategy, termed discriminative sparse multimodal learning for feature selection (DSML-FS). In the proposed method, joint structured sparsity regularizations are used to exploit the intrinsic data structure and relationships among different features. Discriminative least squares regression is applied to enlarge the distance between classes. Therefore, the weight matrix incorporating the information of feature wise and individual properties is automatically learned for spectral-spatial feature selection. We develop an alternative iterative algorithm to solve the nonlinear optimization problem in DSML-FS with global convergence. We systematically evaluate the proposed algorithm on three available hyperspectral data sets, and the encouraging experimental results demonstrate the effectiveness of DSML-FS.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Data structures</subject><subject>Discriminative sparse multimodal learning</subject><subject>Drafting</subject><subject>Feature based</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>hyperspectral classification</subject><subject>Hyperspectral imaging</subject><subject>Iterative algorithms</subject><subject>Joints</subject><subject>Learning</subject><subject>Noise</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Software packages</subject><subject>Sparse matrices</subject><subject>Spectra</subject><subject>spectral-spatial feature</subject><subject>Vectors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctKxDAUhoMoOF4eQNwU3LjpmKS5NEvxDiOCHdchk54Okd5M2oF5e1NmdOHG1YHDdz6S_0foguA5IVjdLJ_eiznFhM1pRgnD_ADNCOd5igVjh2iGiRIpzRU9RichfOJIciJnyN-OQ9eYwdmk6OMwdVr0YAdv6uQRzDB6SAqo48Z1bVJ1Pnne9uDDD_PSmDUkG2eSexesd41ro2UDk80HSF7HenBNV0Z0Aca3rl2foaPK1AHO9_MUfTw-LO-e08Xb08vd7SK1TPEhXeV5aWzFOV6VRlkp6KpiTHCqSC4zwaWkqmIqM5VdQVlWkoMRVsqMlWAUl9kput55e999jRAG3cQnQl2bFroxaCIZkzEykf2PCoqxJJjiiF79QT-70bfxIzrmzWPO0RopsqOs70LwUOk-ZmP8VhOsp8L0VJieCtP7wuLN5e7GAcAvL_Jo5CT7BkFukpQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Zhang, Qian</creator><creator>Tian, Yuan</creator><creator>Yang, Yiping</creator><creator>Pan, Chunhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20150101</creationdate><title>Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning</title><author>Zhang, Qian ; Tian, Yuan ; Yang, Yiping ; Pan, Chunhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-b88dacf550bda9c762bf4465291873657729f493afcbeddf75ea6c7734dea9573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Data structures</topic><topic>Discriminative sparse multimodal learning</topic><topic>Drafting</topic><topic>Feature based</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>hyperspectral classification</topic><topic>Hyperspectral imaging</topic><topic>Iterative algorithms</topic><topic>Joints</topic><topic>Learning</topic><topic>Noise</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Software packages</topic><topic>Sparse matrices</topic><topic>Spectra</topic><topic>spectral-spatial feature</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Yang, Yiping</creatorcontrib><creatorcontrib>Pan, Chunhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qian</au><au>Tian, Yuan</au><au>Yang, Yiping</au><au>Pan, Chunhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>1</issue><spage>261</spage><epage>279</epage><pages>261-279</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the dimensionality reduction techniques, i.e., feature selection, are applied before subsequent utilizations. However, such representation can introduce redundancy and noise. Moreover, traditional single-feature selection methods treat different features equally and ignore their complementary properties. As a result, the performance of subsequent tasks, i.e., classification, would drop down. In this paper, we propose a novel approach to integrate the spectral-spatial features based on the concatenating strategy, termed discriminative sparse multimodal learning for feature selection (DSML-FS). In the proposed method, joint structured sparsity regularizations are used to exploit the intrinsic data structure and relationships among different features. Discriminative least squares regression is applied to enlarge the distance between classes. Therefore, the weight matrix incorporating the information of feature wise and individual properties is automatically learned for spectral-spatial feature selection. We develop an alternative iterative algorithm to solve the nonlinear optimization problem in DSML-FS with global convergence. We systematically evaluate the proposed algorithm on three available hyperspectral data sets, and the encouraging experimental results demonstrate the effectiveness of DSML-FS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2014.2321405</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2015-01, Vol.53 (1), p.261-279
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_1744720163
source IEEE Electronic Library (IEL)
subjects Algorithms
Automation
Data structures
Discriminative sparse multimodal learning
Drafting
Feature based
Feature extraction
feature selection
hyperspectral classification
Hyperspectral imaging
Iterative algorithms
Joints
Learning
Noise
Optimization
Remote sensing
Software packages
Sparse matrices
Spectra
spectral-spatial feature
Vectors
title Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Spatial-Spectral%20Feature%20Selection%20for%20Hyperspectral%20Image%20via%20Discriminative%20Sparse%20Multimodal%20Learning&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Qian&rft.date=2015-01-01&rft.volume=53&rft.issue=1&rft.spage=261&rft.epage=279&rft.pages=261-279&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2014.2321405&rft_dat=%3Cproquest_RIE%3E1744720163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555019447&rft_id=info:pmid/&rft_ieee_id=6819451&rfr_iscdi=true