Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning
Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2015-01, Vol.53 (1), p.261-279 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the dimensionality reduction techniques, i.e., feature selection, are applied before subsequent utilizations. However, such representation can introduce redundancy and noise. Moreover, traditional single-feature selection methods treat different features equally and ignore their complementary properties. As a result, the performance of subsequent tasks, i.e., classification, would drop down. In this paper, we propose a novel approach to integrate the spectral-spatial features based on the concatenating strategy, termed discriminative sparse multimodal learning for feature selection (DSML-FS). In the proposed method, joint structured sparsity regularizations are used to exploit the intrinsic data structure and relationships among different features. Discriminative least squares regression is applied to enlarge the distance between classes. Therefore, the weight matrix incorporating the information of feature wise and individual properties is automatically learned for spectral-spatial feature selection. We develop an alternative iterative algorithm to solve the nonlinear optimization problem in DSML-FS with global convergence. We systematically evaluate the proposed algorithm on three available hyperspectral data sets, and the encouraging experimental results demonstrate the effectiveness of DSML-FS. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2014.2321405 |