Identification of budesonide metabolites in human urine after oral administration
Budesonide (BUD) is a glucocorticoid widely used for the treatment of asthma, rhinitis, and inflammatory bowel disease. Its use in sport competitions is prohibited when administered by oral, intravenous, intramuscular, or rectal routes. However, topical preparations are not prohibited. Strategies to...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2012-08, Vol.404 (2), p.325-340 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Budesonide (BUD) is a glucocorticoid widely used for the treatment of asthma, rhinitis, and inflammatory bowel disease. Its use in sport competitions is prohibited when administered by oral, intravenous, intramuscular, or rectal routes. However, topical preparations are not prohibited. Strategies to discriminate between legal and forbidden administrations have to be developed by doping control laboratories. For this reason, metabolism of BUD has been re-evaluated using liquid chromatography–tandem mass spectrometry (LC-MS/MS) with different scan methods. Urine samples obtained after oral administration of 3 mg of BUD to two healthy volunteers have been analyzed for metabolite detection in free and glucuronide metabolic fractions. Structures of the metabolites have been studied by LC-MS/MS using collision induced dissociation and gas chromatography–mass spectrometry (GC/MS) in full scan mode with electron ionization. Combination of all structural information allowed the proposition of the most comprehensive picture for BUD metabolism in humans to this date. Overall, 16 metabolites including ten previously unreported compounds have been detected. The main metabolite is 16α-hydroxy-prednisolone resulting from the cleavage of the acetal group. Other metabolites without the acetal group have been identified such as those resulting from reduction of C20 carbonyl group, oxidation of the C11 hydroxyl group and reduction of the A ring. Metabolites maintaining the acetal group have also been identified, resulting from 6-hydroxylation (6α and 6β-hydroxy-budesonide), 23-hydroxylation, reduction of C6-C7, oxidation of the C11 hydroxyl group, and reduction of the C20 carbonyl group. Metabolites were mainly excreted in the free fraction. All of them were excreted in urine during the first 24 h after administration, and seven of them were still detected up to 48 h after administration for both volunteers. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-012-6037-0 |