Accurate photometric redshift probability density estimation – method comparison and application
We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ord...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2015-10, Vol.452 (4), p.3710-3725 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, which can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitude less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular neural network code (annz). In our use case, this improvement reaches 50 per cent for high-redshift objects (z ≥ 0.75). We show that using these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used methods. The cosmological analyses we examine and find improvement upon are the following: gravitational lensing cluster mass estimates, modelling of angular correlation functions and modelling of cosmic shear correlation functions. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv1567 |