Kolmogorov complexity and the geometry of Brownian motion
In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov–Chaitin random reals (complex oscillations). We unfold Kolmogorov–Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns ge...
Gespeichert in:
Veröffentlicht in: | Mathematical structures in computer science 2015-10, Vol.25 (7), p.1590-1606 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov–Chaitin random reals (complex oscillations). We unfold Kolmogorov–Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion. |
---|---|
ISSN: | 0960-1295 1469-8072 |
DOI: | 10.1017/S0960129513000273 |