Kolmogorov complexity and the geometry of Brownian motion

In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov–Chaitin random reals (complex oscillations). We unfold Kolmogorov–Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2015-10, Vol.25 (7), p.1590-1606
1. Verfasser: Fouche, Willem L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov–Chaitin random reals (complex oscillations). We unfold Kolmogorov–Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129513000273