Invasive Tightly-Coupled Processor Arrays: A Domain-Specific Architecture/Compiler Co-Design Approach

We introduce a novel class of massively parallel processor architectures called invasive Tightly-Coupled Processor Arrays (TCPAs). The presented processor class is a highly parameterizable template which can be tailored before runtime to fulfill costumers' requirements such as performance, area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2014-07, Vol.13 (4s), p.1-29
Hauptverfasser: Hannig, Frank, Lari, Vahid, Boppu, Srinivas, Tanase, Alexandru, Reiche, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a novel class of massively parallel processor architectures called invasive Tightly-Coupled Processor Arrays (TCPAs). The presented processor class is a highly parameterizable template which can be tailored before runtime to fulfill costumers' requirements such as performance, area cost, and energy efficiency. These programmable accelerators are well suited for domain-specific computing from the areas of signal, image, and video processing as well as other streaming processing applications. To overcome future scaling issues (e.g., power consumption, reliability, resource management, as well as application parallelization and mapping), TCPAs are inherently designed in way that they support self-adaptivity and resource awareness at hardware level. Here, we follow a recently introduced resource-aware parallel computing paradigm called invasive computing where an application can dynamically claim, execute, and release the resources. Furthermore, we show how invasive computing can be used as an enabler for power management. For the first time, we present a seamless mapping flow for TCPAs, based on a domain-specific language. Moreover, we outline a complete symbolic mapping approach. Finally, we support our claims by comparing a TCPA against an ARM Mali-T604 GPU in terms of performance and energy efficiency.
ISSN:1539-9087
1558-3465
DOI:10.1145/2584660