Asymptotic expansion of Gaussian chaos via probabilistic approach
For a centered d -dimensional Gaussian random vector ξ = ( ξ 1 , … , ξ d ) and a homogeneous function h : ℝ d → ℝ we derive asymptotic expansions for the tail of the Gaussian chaos h ( ξ ) given the function h is sufficiently smooth. Three challenging instances of the Gaussian chaos are the determin...
Gespeichert in:
Veröffentlicht in: | Extremes (Boston) 2015-09, Vol.18 (3), p.315-347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a centered
d
-dimensional Gaussian random vector
ξ
= (
ξ
1
, … ,
ξ
d
) and a homogeneous function
h
: ℝ
d
→ ℝ we derive asymptotic expansions for the tail of the Gaussian chaos
h
(
ξ
) given the function
h
is sufficiently smooth. Three challenging instances of the Gaussian chaos are the determinant of a Gaussian matrix, the Gaussian orthogonal ensemble and the diameter of random Gaussian clouds. Using a direct probabilistic asymptotic method, we investigate both the asymptotic behaviour of the tail distribution of
h
(
ξ
) and its density at infinity and then discuss possible extensions for some general
ξ
with polar representation. |
---|---|
ISSN: | 1386-1999 1572-915X |
DOI: | 10.1007/s10687-015-0215-3 |