Asymptotic expansion of Gaussian chaos via probabilistic approach

For a centered d -dimensional Gaussian random vector ξ = ( ξ 1 , … , ξ d ) and a homogeneous function h : ℝ d → ℝ we derive asymptotic expansions for the tail of the Gaussian chaos h ( ξ ) given the function h is sufficiently smooth. Three challenging instances of the Gaussian chaos are the determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremes (Boston) 2015-09, Vol.18 (3), p.315-347
Hauptverfasser: Hashorva, Enkelejd, Korshunov, Dmitry, Piterbarg, Vladimir I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a centered d -dimensional Gaussian random vector ξ = ( ξ 1 , … , ξ d ) and a homogeneous function h : ℝ d → ℝ we derive asymptotic expansions for the tail of the Gaussian chaos h ( ξ ) given the function h is sufficiently smooth. Three challenging instances of the Gaussian chaos are the determinant of a Gaussian matrix, the Gaussian orthogonal ensemble and the diameter of random Gaussian clouds. Using a direct probabilistic asymptotic method, we investigate both the asymptotic behaviour of the tail distribution of h ( ξ ) and its density at infinity and then discuss possible extensions for some general ξ with polar representation.
ISSN:1386-1999
1572-915X
DOI:10.1007/s10687-015-0215-3