Maximum Lyapunov exponents and stability criteria of linear systems with variable delay

The Myshkis problem of the maximum Lyapunov exponent of a first-order linear differential equation with an arbitrary bounded delay is solved. The result obtained is generalized to a system of equations of arbitrary order, whose matrix has real eigenvalues. A sufficient condition for exponential stab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics and mechanics 2015-01, Vol.79 (1), p.1-8
1. Verfasser: Zevin, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Myshkis problem of the maximum Lyapunov exponent of a first-order linear differential equation with an arbitrary bounded delay is solved. The result obtained is generalized to a system of equations of arbitrary order, whose matrix has real eigenvalues. A sufficient condition for exponential stability is obtained for a system with complex eigenvalues.
ISSN:0021-8928
0021-8928
DOI:10.1016/j.jappmathmech.2015.04.011